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Abstract 
 

Multi-task reinforcement learning (MTRL) addresses key limitations of existing reinforcement learning 
(RL) methods, notably in generalization and sample efficiency. However, managing multiple tasks 
simultaneously remains a significant challenge. Various approaches, including curriculum learning, the 
mixture of experts, and parameter-sharing strategies, have been explored to improve MTRL performance. 
On the other hand, one of the recent research suggests that Simplicial Normalization (SimNorm), rather 
than ReLU, is an effective activation function for modeling the objective function on single task RL. In 
this paper, we investigate whether this claim extends to MTRL. We conducted experiments on two types 
of agents—one using ReLU and the other using SimNorm—within the Meta-world environments, 
comparing their total return and success rates. Our findings show that SimNorm appears to underperform 
compared to ReLU in the MTRL environments.  

1 Introduction 
 

 RL has made significant progress in recent years, largely due to 
the integration of deep learning. Deep RL has enabled RL to 
handle complex, high-dimensional tasks by leveraging deep 
neural networks (DNNs) as function approximators. Despite 
these successes, deep RL typically requires a substantial amount 
of data and environment interaction, making it inefficient and 
impractical for real-world applications where data collection is 
expensive or time-consuming [1]. 
 One of the key limitations of deep RL is its predominant focus 
on single-task learning. Most existing methods train separate 

policies for individual tasks, which not only limits the reusability 
of learned knowledge but also results in suboptimal sample 
efficiency when tackling a large number of tasks. To address 
these issues, MTRL has been proposed as a solution. MTRL aims 
to develop a single policy that can effectively handle multiple 
tasks by sharing representations and parameters across related 
tasks, improving both sample efficiency and generalization [2]. 
However, despite its potential, MTRL faces significant 
challenges. As the number and diversity of tasks increase, issues 
such as negative transfer and gradient conflicts arise, where 
learning one task adversely affects the performance of others [3]. 
Additionally, it is challenging to determine what knowledge 



should be shared between tasks and how to share it efficiently. 
 Recent approaches to MTRL have attempted to address these 
problems through various kinds of techniques: curriculum 
learning which learns tasks in the appropriate order to efficiently 
extract information, mixture of experts which selects or mixes 
expert agents, learning multiple tasks by adding losses from 
different tasks, or partitioning parameters which are shared and 
not. Other approaches are using generative models, such as 
diffusion model [4, 5], or transformer model [6]. 
 Recently, some studies have proposed that using SimNorm [7] 
instead of ReLU may offer advantages. They argue that a 
regularized model can help prevent suboptimal regions formed 
by biased gradients, and SimNorm contributes to this 
regularization [8]. We aim to evaluate whether SimNorm’s 
smoothing of the objective can mitigate issues arising from 
gradient conflict in MTRL. In our work, we apply this solution to 
the current State-Of-The-Art (SOTA) MTRL model HarmoDT [6] 
in Meta-World [9] environments, focusing on evaluating 
suboptimality and success rates across different models. By 
systematically benchmarking these models, we aim to either 
validate or refute the efficacy of SimNorm in MTRL. Our 
analysis will contribute to a deeper understanding of its potential 
impact on improving model performance and generalization. 
 
2 Preliminary 
 
2.1 Multi-task Reinforcement Learning 
 
 In RL, the goal aims to learn a policy𝜋!(𝑎|𝑠) That maximizes 
the expected cumulative discounted rewards in a Markov 
Decision Process (MDP), defined by the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾,
𝜌	). Here, 𝑆 is the state space, 𝐴 is the action space, 𝑃(𝑠"|	𝑠, 𝑎) 
denotes the environment dynamics, 𝑅:	𝑆 × 𝐴	 → ℝ	 is the reward 
function, 𝛾	∈	[0,1] is the discount factor, and	𝜌	is the initial state 
distribution. In an offline environment, a static dataset 	𝐷 =
{(𝑠, 𝑎, 𝑠", 𝑟)} is provided. Offline RL algorithms learn policies 
exclusively from static datasets without the need for online 
interactions. The cumulative discounted reward (Eq. 1) measures 
the total expected reward that an agent can accumulate from a 
given state, considering future rewards with a discount factor γ 
[8].  

max 𝐽(𝜃) = 	𝑚𝑎𝑥 𝔼 #~%(∙)
)!~*"+∙,𝑠-.

B∇! DE𝛾-𝑟(𝑠- , 𝑎-)
/

-0#

FG (1) 

 In the MTRL setting, each task may have distinct reward 
functions, state spaces, and transition dynamics. Given a specific 
task Τ	~	𝑝(Τ),	 the task specific MDP is represented as (𝑆1,
𝐴1, 	𝑃1, 𝑅1, 𝛾1, 	𝜌1). 

2.2 Simplical Normalization 
 

𝑆𝑖𝑚𝑁𝑜𝑟𝑚(𝑧) = [𝑔#, ⋯ , 𝑔2], 𝑔3 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧3:356) (2)                   
 
 SimNorm is the activation function dividing the latent space into 
continuous vector partitions and applies the softmax function to 
each partition, resulting in a probability distribution over the 
latent factors within that partition (Eq. 2). It introduces an 
approach to normalize latent representations by projecting them 
onto fixed-dimensional simplices. This continuous relaxation 
enables a smoother representation while inducing a degree of 
sparsity [7]. The PWM results indicate that the SimNorm 
activation function is an effective tool for enhancing the efficient 
learning of environmental dynamics in the world model [8]. 
 
3 Experiment 
 
3.1 SimNorm in Multi-Objective Toy Environment 
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 In this section, we experimentally demonstrate that using 
SimNorm as an activation function may not yield optimal 
performance in multi-objective optimization. To illustrate this, 
we design a toy environment inspired by PWM. In PWM, a toy 
environment is constructed as Eq. 4. They use a two-layer Multi-
Layer Perceptron (MLP) to approximate the objective function, 
and then determine the launch angle 𝜃, which minimizes the 
objective as approximated by the MLP. In this environment 𝑔 =
9.81  is the gravitational acceleration, h and w represent the 
height of the wall and the distance from the launch point to the 
wall, respectively, (𝑥7, 𝑦7) denotes the launch point, 𝑣 = 10  is 
the launch velocity, and 𝑡 = 2  is the time elapsed after the 
projectile is fired. We extend the toy environment from PWM by 
setting new objectives in Eq. 5 and Eq. 6. Eq. 5 represents an 
environment where tasks with and without walls coexist, while 
Eq. 6 represents an environment where both tasks involve walls. 
  



Table 1. Comparison of optimality gap between ReLU and SimNorm. 
Average optimality gap across 10 seeds. 

Activation 
function Opt. gap for Eq. 5 Opt. gap for Eq. 6 

ReLU 0.43±0.20 1.52±0.79 

SimNorm 1.71±0.41 4.13±0.67 

 
 To evaluate the smoothing effect of SimNorm in a multi-
objective setting, we train the MLP under the same conditions as 
in PWM, using a model with two hidden layers and 32 neurons. 
The MLP is trained with the Adam optimizer with learning rate 
𝛼 = 2 × 10<=, utilizing 1,000 uniform samples, a batch size of 
50, and 100 epochs. SimNorm V is set to 8, as in PWM. Contrary 
to the single-objective case, in the multi-objective scenario, 
models using SimNorm exhibited a larger optimality gap 
compared to those using ReLU, as shown in Table 1. This 
suggests that SimNorm may not be as effective in optimization 
tasks within a multi-objective framework. 
 
3.2 SimNorm in Multi-Task Reinforcement Learning 
 
 In this section, we observed that using SimNorm does not 
improve the performance of MTRL models. We conducted 
experiments on the Meta-World benchmark. To investigate the 
effect of SimNorm based on the number of tasks, MT50 (50 
selected manipulation tasks) and MT5 (5 selected tasks) datasets 
are utilized. As a baseline model, we used HarmoDT-F, the SOTA 
MTRL model in Meta-World. The models were trained using a 
near-optimal dataset collected via SAC replay [10]. Performance 
comparisons between the models using ReLU and SimNorm 
were made by evaluating the averaged success rate across tasks. 

 
Fig1. Displayed from left and right are the results (total return and 
success rate) for 5 tasks and 50 tasks. Each result is averaged over 3 
different seeds. Each task is evaluated for 50 episodes. 

Table2. Comparison of final success rate between ReLU and SimNorm. 
Averaged over 3 different seeds. 

Activation  
function 5 tasks 50 tasks 

ReLU 81.33 ±	3.48 30.33 ± 3.47 

SimNorm 78.67 ± 3.28 24.53 ± 3.61 

 

 As shown in Table 2, applying ReLU to HarmoDT-F yields a 
higher final success rate compared to SimNorm, with 
improvements of 2.66% in MT5 and 5.8% in MT50. Additionally, 
as illustrated in Fig. 1, the total return and success rate throughout 
the training process are overall higher with ReLU than with 
SimNorm. These findings empirically demonstrate that 
smoothing the objective with SimNorm does not ensure higher 
performance or faster convergence in MTRL. 
 
4 Conclusion 
 

 In this study, we examined the effects of using ReLU versus 
SimNorm as activation functions in the MTRL model. Through 
evaluations conducted in both toy environments inspired by 
PWM and in the Meta-World benchmark, we found that 
SimNorm does not outperform ReLU in optimizing multi-
objective tasks. Our results indicate that objective smoothing, as 
achieved through SimNorm, does not significantly enhance the 
training efficiency or performance of the MTRL model. In future 
research, we plan to explore alternative approaches to resolve 
gradient conflicts as a potential pathway to improve the 
performance of MTRL models. 
 

5 References 
 
[1] Levine, Sergey, et al., "Offline reinforcement learning: 
Tutorial, review, and perspectives on open problems," in arXiv 



preprint arXiv:2005.01643, 2020. 
[2] Caruana, R., “Multitask Learning,” in Machine Learning, vol. 
28, p. 41–75, 1997. 
[3] Ruder, S., "An Overview of Multi-Task Learning in Deep 
Neural Networks," in arXiv preprint arXiv:1706.05098, 2017.  
[4] Sohl-Dickstein, Jascha, et al., "Deep unsupervised learning 
using nonequilibrium thermodynamics,” in International 
Conference on Machine Learning, PMLR, p. 2256-2265, 2015. 
[5] Zhu, Zhengbang, et al., "Diffusion models for reinforcement 
learning: A survey," in arXiv preprint arXiv:2311.01223, 2023. 
[6] Hu, Shengchao, et al., "HarmoDT: Harmony Multi-Task 
Decision Transformer for Offline Reinforcement Learning," in 
arXiv preprint arXiv:2405.18080, 2024. 
[7] Nicklas Hansen, Hao Su, and Xiaolong Wang., “Td-mpc2: 
Scalable, robust world models for continuous control”, in 
International Conference on Learning Representation, 2024. 
[8] Georgiev, Ignat, et al. "PWM: Policy Learning with Large 
World Models," in arXiv preprint arXiv:2407.02466, 2024. 
[9] Yu, Tianhe, et al., "Meta-world: A benchmark and evaluation 
for multi-task and meta reinforcement learning," in Conference 
on Robot Learning, PMLR, 2020. 
[10] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy 
maximum entropy deep reinforcement learning with a stochastic 
actor,” in International Conference on Machine Learning, PMLR, 
2018. 
 


